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A finite element formulation for vibration control and suppression of intelligent
structures with a new piezoelectric plate element is presented. On the basis of a negative
velocity feedback control law, a general method of active vibration control and suppression
for intelligent structures is put forth. Dynamic stability and the effect of vibration control
for intelligent structures are investigated by introducing the state space equations of
intelligent structures. The damped frequencies as well as the damping ratio are derived by
state space analysis. The procedure is illustrated with the help of two numerical examples.
The purpose of the first example is to check the accuracy of the present finite element
solution with the analytical one. The second example is to study the problem of active
vibration control and suppression for intelligent structures.
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1. INTRODUCTION

Space structures, aircraft, and so on are required to be light in weight due to the high cost
of transportation. They are also lightly damped because of the low internal damping of
the materials used in their construction, and the increased flexibility may allow large
amplitude vibration, which may cause structural instability. These problems will reduce
precision and affect operational performance. Since these structures are distributed
parameter systems having an infinite set of vibration modes, distributed measurement and
control are required. However, conventional control systems use discrete sensors and
actuators (S/As) to control the vibration of distributed elastic systems. If the sensors are
placed at nodal modes or on the lines of a vibration mode, that mode will be missed. Thus,
it is essential to use an active control system in these structures to control and stabilize
the structures during their operation.

The intelligent structure [1], which comprises the main structure and distributed
piezoelectric S/As, is of integrated self-monitoring and self-controlling capabilities. It can
detect and generate a number of vibration modes simultaneously. An active control system
containing the intelligent structure has proven to be effective in controlling and suppressing
the vibration of distributed light and flexible systems [2–6].

Finite element methods for analyzing dynamic measurement and controlling vibration
of the intelligent plate structure are described in references [7] and [8]. In these methods
the plate and thin S/As layer are generally modelled with isoparametric hexahedron solid
elements. However, hexahedron solid elements are too thick for thin plate/shell
applications, and will result in excessive strain energies and higher stiffness coefficients. To
overcome these shortcomings, internal degrees of freedom were added to the formulation,
which made the problem large and complex.
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There are two essential ideas in this paper. The first is the formulation of dynamic
equations for intelligent plate structures with a new piezoelectric plate element. The second
is to develop a method of active vibration control and suppression for intelligent structures
on the basis of a negative velocity feedback control law and derive the state space equation
of motion for the intelligent structure to appraise the control effect as well as dynamic
stability. Finally, two numerical examples are given to demonstrate the validity of the
method presented in this paper.

2. THE FORMULATION OF THE FINITE ELEMENT EQUATION OF MOTION
FOR THE INTELLIGENT STRUCTURE

2.1.  

The liner constitutive equation in a piezoelectric medium can be expressed by the direct
and inverse piezoelectric equations respectively. These equations for the plate shape sensor
and actuator are written as follows:

{D}=[e]{o}+[e]{E}, {s}=[Dp ]{o}−[e]T{E}, (1, 2)

where {D}, {E}, {o} and {s} are the electric displacement, electric field, strain and stress
vectors, and [Dp ], [e] and [e] are the elasticity, piezoelectric and dielectric constant matrices,
respectively. [e]T is defined as the transpose of [e].

Equation (1) describes the direct piezoelectric effect and equation (2) describes the
inverse piezoelectric effect.

The constitutive equation in the elastic field is as follows:

[s]= [De ]{e}, (3)

where [De ] is the elasticity constant matrix of the main structure in the intelligent structure.

2.2.   

The arbitrary quadrilateral bending element of plate [9] is a four-node, 12-degree-of-free-
dom isoparametric element for thin plates. The element nodal displacement variable {ue}
is defined as

{ue}= {w1 ux1 uy1 w2 ux2 uy2 . . . w4 ux4 uy4}T, (4)

where w is the normal displacement, ux =(1w/1y) and uy (=−1w/1x) are the rotation
about the x- and y-axes. The normal displacement variables w is expressed in nodal
variables by finite element interpolation functions as follows:

w=[Nu ]{ue}, (5)

where [Nu ] is the displacement shape function matrix.
The strain variable {o} is expressed as a function of the nodal displacement variables.

It is
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The element nodal electric potential variable {ve} is defined as

{ve}= {v1 v2 v3 v4}T. (7)
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The electric potential variable {v} is expressed in terms of nodal electric potential variables
via the shape functions as follows:

{v}=[Nv ]{ve}, (8)

where [Nv ] is the electrical potential shape function matrix.
The electric field {E} is defined by the electric potential {v} by using a gradient operator

9, and is written in terms of nodal electrical potential variables:

{E}=−9{v}=−[Bv ]{ve}. (9)

2.3.   

Using Hamilton’s principle, we have

d g
t2

t1

(Te −Ue −We ) dt=0, (10)

where Te is the element kinetic energy, Ue is the element potential energy and We is the
element work done by the external forces.

The element kinetic energy is

Te = 1
2 gQse

rs{u̇}T{u̇} dQ+ 1
2 gQpe

rp{u̇}T{u̇} dQ. (11)

Here, rs and rp are the mass density of the main structure material and the piezoelectric
material respectively. {u̇} is the velocity vector. The subscripts s, p and e represent the main
structure, the piezoelectric material field and the element, respectively. Q is the element
volume.

The element potential energy is

Ve = 1
2 gQpe

{o}T{s} dQ+ 1
2 gQse

{o}T{s} dQ− 1
2 gQpe

{E}T{D} dQ. (12)

The work done by the surface force and the applied surface electrical charge density is

We =gS1

{u}T{f e
s } dS−gS2

{v}Tse dS, (13)

where S1 and S2 are the surface area applied forces and the electrical charge, respectively.
{f e

s } and se are the surface forces and the surface electrical charge density, respectively.
Substituting equations (1)–(9) and equations (11)–(13) into equation (10) and not taking
structural damping into consideration, equations of motion for the plate element with
distributed piezoelectric S/As can be derived:

([mp ]+ [ms ]){üe}+[cs ]{u̇e}+([kuus ]+ [kuup ]){ue}+[kuv ]{ve}= {Fe
s }, (14)

[kvu ]{ue}−[kvv ]{ve}= {Fe
c }, (15)
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where

[mp ]=gQpe

[Nu ]Trp [Nu ] dQ, [ms ]=gQse

[Nu ]Trs [Nu ] dQ,

[kuus ]= z2 gQse

[Bu ]T[De ][Bu ] dQ, [kuup ]= z2 gQpe

[Bu ]T[Dp ][Bu ] dQ,

[kuv ]= [kvu ]T = z gQpe

[Bu ]T[e]T[Bv ] dV,

[kvv ]=gQpe

[Bv ]T[e][Bv ] dQ,

{Fe
s }=gS1

[Nu ]T{f e
s } dS, {Fe

c }=−gS2

[Nv ]Tse dS.

Substituting [m]= [mp ]+ [ms ] and [kuu ]= [kuus ]+ [kuup ] into equation (14) yields

[m]{üe}+[cs ]{u̇e}+[kuu ]{ue}+[kuv ]{ve}= {Fe
s }. (16)

When the Guyan reduction method [10] is applied to equations (16) and (14), the equations
are reduced to one equation as follows:

[m]{üe}+[cs ]{u̇e}+[k]{ue}= {Fe
s }+ {Fe

t }, (17)

where

[k]= [kuu ]+ [kuv ][kvv ]−1[kvu ], {Fe
t }=−[kuv ][kvv ]−1{Fe

c }.

If the sensing information is required, the electrical potential vectors can be recovered by

{ve}=[kvv ]−1([kvu ]{ue}− {Fe
c }). (18)

Note that {Fe
c } is usually zero in the distributed piezoelectric sensor layer. Thus, the

distributed piezoelectric sensor electrical potential output is estimated by

{ve}=[kvv ]−1[kvu ]{ue}. (19)

3. ACTIVE VIBRATION CONTROL AND SUPPRESSION FOR THE
INTELLIGENT STRUCTURE

In equation (17) there are two load terms; i.e., the mechanical forces and the electrical
forces. In the active vibration control application the electric force term in equation (17)
can be regarded as the feedback control force. It can be written as

{Fe
t }=[kuv ][kvv ]−1{Ve}. (20)

{Ve} is a function of the feedback voltage in terms of the output signal from the distributed
piezoelectric sensor layer.

The negative velocity feedback control law on {Ve} is implemented as

{Ve}=−G{v̇e}=−G[kvv ]−1[kvu ]{u̇e}. (21)
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Hence, the feedback control forces can be written as

{Fe
t }=−[kuv ][kvv ]−1G[kvv ]−1[kvu ]{u̇e], (22)

where G is the feedback gain.
Substituting equation (22) into equation (17) and rearranging gives

[m]{üe}+[ct ]{u̇e}+[k]{ue}= {Fe
s }, (23)

where

[ct ]= [cs ]+ [kuv ][kvv ]−1G[kvv ]−1[kvu ]. (24)

The equation of motion of the system can be written as follows:

[M]{ü]+ [CT ]{u̇}+[K]{u}= {Fs}. (25)

As shown in equation (24), the damping terms in equation (23) consist of two parts. One
is the structural damping, and the other is the equivalent damping term induced by the
feedback control force. The feedback control forces induced by the feedback voltage can
effectively enhance the system damping and therefore suppress the vibration of the
structure. Thus, we can conclude that under a negative velocity feedback control law, the
intelligent structure has active vibration control and suppression capabilities.

From equation (24) it is known that equivalent damping is only relative to the feedback
gain G when the intelligent structure is fixed. Thus, by adjusting the feedback gain we can
change the damping of the intelligent structure so that the goal of controlling and
suppressing the vibration of the intelligent structure can be achieved. An active vibration
control system of the intelligent structure is shown in Figure 1.

4. THE STATE SPACE EQUATIONS OF MOTION FOR INTELLIGENT STRUCTURES

Here, only the feedback control forces are considered. According to equation (17), the
system dynamic equation can be written as

[M]{ü}+[CS ]{ü}+[K]{u}=[Kuv ][Kvv ]−1{CF}, (26)

where {CF}=CP{VA}. CP is the capacitance of the piezoelectric actuators, and {VA} is the
feedback voltage of the piezoelectric acuator.

The output equation of the piezoelectric sensors is

{VS}=[Kvv ]−1[Kvu ]{u}. (27)

Figure 1. The active vibration control system for an intelligent plate.
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Figure 2. The pezoelectric PVDF bimorph beam.

When the state variables x= {u u̇}T and uc = {VA} are introduced, the system equation
of motion can be written in standard state space form as

ẋ=Ax+Buc , (28)
where

A=$ [0]
−[M]−1[K]

[I]
−[M]−1[CS ]%, B=$ [0]

[M]−1[H]%.

Here

[K]= [Kuu ]+ [Kuv ][Kvv ]−1[Kvu ], [H]=CP [Kuv ][Kvv ]−1.

The sensor output equation in state space form is

y=Cx, (29)

where

y= {Vs}, C=[[Kuv ][Kvv ]−1 [0]]T.

If the negative velocity feedback control law is applied, the sensor output voltage is
multiplied by feedback gain and fed into the actuator. Then, the feedback control equation
for the intelligent structure is

uc =Gy=GCx. (30)

Substituting equation (30) into equation (28), we obtain the following equation:

ẋ=(A+BGC)x. (31)

From equation (31), a complex eigenvalue problem can be obtained as follows:

[lE−(A+BGC)]{f}=0. (32)

The complex eigenvalue is

l= s+ivd . (33)

The damping ratio can be used to appraise the effect of active vibration control and
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suppression for the intelligent structure. The damping ratio is defined as the negative of
the normalized real part of the complex eigenvalue [12]; i.e.,

j=−
s

zs2 +v2
d

. (34)

The two measures of dynamic stability are the real part of the complex eigenvalue s and
the damping ratio j. A system is dynamically stable when, for each mode, the real parts
of the complex eigenvalues are negative. In this case the damping ratios are positive for
each mode.

5. NUMERICAL EXAMPLES

5.1.   

A piezoelectric bimorph beam [11], shown in Figure 2, is considered in order to check
the accuracy of the piezoelectric finite element method presented in this paper.

This beam consists of two identical PVDF uniaxial beams with opposite polarities. The
cantilever beam is modelled with five identical elements. The material properties of PVDF
are shown in Table 1.

A theoretical solution to the deflection of the beam is given by

w(x)=0·375
e31Va

E 0xt1
2

, (35)

where E is Young’s modulus, Va applied voltage and t the thickness of the beam.
When a unit voltage is applied across the thickness, the deflections at the nodes are

calculated by the finite element method presented in this paper. The deflection of the beam
is calculated for various applied voltage between 0 and 200 V. The results are shown in
Tables 2 and 3. The calculated deflections in the work of Tseng [12] and the theoretical
solution are also listed in Tables 2 and 3. The results show the close agreement between
the theoretical and the present finite element solutions, and that the accuracy of the present
finite element solution is higher than that of Tseng [12]. The total number of degrees of
freedom used in this analysis is compared in Table 4 with that in Tseng [12] showing that

T 1

The material properties of the main structure and piezoelectric

Property PVDF Graphite/epoxy

E1 0·2E+10 N/m2 0·98E+11 N/m2

E2 0·2E+10 N/m2 0·79E+10 N/m2

G12 0·775E+9 N/m2 0·56E+10 N/m2

n12 0·29 0·29
n21 0·28 0·28
r 1800 kg/m3 1520 kg/m3

e31 0·046 C/m2 0·0
e32 0·046 C/m2 0·0
e33 0·0 0·0
o11 0·1062E−9 F/m 0·0
o22 0·1062E−9 F/m 0·0
o33 0·1062E−9 F/m 0·0
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T 2

The deflection (in m) of the PVDF bimorph beam (for a unit voltage)

Method
Distance ZXXXXXXXXXXXXCXXXXXXXXXXXXV

(mm) Theory Tseng [12] Present

20 0·0140E−06 0·0150E−06 0·0139E−06
40 0·0552E−06 0·0569E−06 0·0547E−06
60 0·1224E−06 0·1371E−06 0·1135E−06
80 0·2208E−06 0·2351E−06 0·2198E−06

100 0·3451E−06 0·3598E−06 0·3416E−06

T 3

The tip deflection (in m) of the PVDF bimorph beam (for various voltages)

Method
Voltage ZXXXXXXXXXXXXCXXXXXXXXXXXXV

V Theory Tseng [12] Present

50 0·1725E−04 0·1570E−04 0·1755E−04
100 0·3451E−04 0·3200E−04 0·3409e−04
150 0·5175E−04 0·4897E−04 0·5067E−04
200 0·6900E−04 0·6417E−04 0·6819E−04

T 4

A comparison of problem sizes

D.O.F.
ZXXXXXXXXXXCXXXXXXXXXXV

Method Node no. Structural Electric Total

Tseng [12] 36 108 36 144
Present 12 36 12 48

Figure 3. A plate with piezoelectric S/As.
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Figure 4. The tip transient displacement response for initial bending displacement. Gain=0 (a), 100 (b) and
140 (c).

the present finite element formulation with a plate element for the intelligent structure
saves a great deal of memory and computation time.

5.2.      

An intelligent plate structure containing distributed piezoelectric S/As on both the top
and bottom surfaces is shown in Figure 3. In this structure, the piezoelectric of the bottom
layer is considered as a sensor to sense the strain and generate the electrical potential, and
the piezoelectric of the top layer as an actuator to control the vibration of the structure.
One edge of the plate is rigidly fixed and the others are free. The intelligent structure can
be divided arbitrarily. All material properties used are shown in Table 1.

First the transient displacement for the plate is obtained by the Wilson–u method. The
transient displacement and displacement decay envelopes, for feedback gains of 0, 100 and
140, are shown in Figures 4, 5 and 6 for bending and torsional initial displacements
respectively. From these figures, it can be seen that as the feedback gain increases, the
displacement decays more rapidly.

Next, the damped frequencies and the damping ratios for the first two modes are
obtained from complex eigenvalues. The damping ratio change versus the feedback gain
is as shown in Figure 7.

From Figure 7, it can be seen that the damping ratio is positive and increases when the
feedback gain increases. Thus, the vibration of the intelligent structure can be effectively
suppressed by the increase of the feedback gain, and dynamic stability can be assured in
active vibration control of intelligent structures.
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Figure 5. The tip transient displacement response for torsional initial displacement. Gain=0 (a), 100 (b) and
140 (c).

6. CONCLUSIONS

An efficient finite element formulation for vibration control of the intelligent structure
is presented. A new piezoelectric plate element, which saves memory and computation
time, is developed. Active vibration control and suppression were also studied by using
the negative velocity feedback control law. In order to investigate the effect and dynamic
stability of active vibration control for the intelligent structure, the state space equation
of the intelligent structure is introduced.

Figure 6. The tip deflection decay envelope. (a) given bending initial displacement; (b) given torsional initial
displacement.
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Figure 7. The damping ratio versus feedback gain. (a) First mode; (b) second mode.

By numerical simulation of the dynamic response and analysis of the state space
equation of motion for intelligent structures, it is observed that the displacement decay
amplitude and the damping ratio increase as the feedback gain increases. It is concluded
that the vibration of the distributed parametric system can be effectively controlled and
suppressed by using intelligent structures, and dynamic stability can be assured in active
vibration control.
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